

ORIGINAL PAPER

eISSN 2713-5004 • https://geodata.kr

March 2023 • Vol. 5. No. 1, pp. 40-48 https://doi.org/10.22761/GD.2023.0001

The Funga of Higher Fungi of Mt. Jeombong in Korea: A Survey of Mongolian Oak Forest in 2017

Seung Won Lee^{1,2} D, Juo Choi¹ D, Ho-Yeon Won³ D, Young Sang Lee⁴ D, Dongsu Yu⁵ D, Areum Han⁴ D, Hwa-Yong Lee⁶ D, Hee-Su Lee⁷ , and Ju-Kyeong Eo^{8,*}

Received February 16, 2023 Revised March 27, 2023 Accepted March 28, 2023

Corresponding Author Ju-Kyeong Eo

Tel: +82-41-950-5634

E-mail: abiesendo@gmail.com

This research was conducted to determine the biodiversity of higher fungi at the supersite of Mt. Jeombong from July to October 2017 during the second long-term ecology research by the National Institute of Ecology under the management of the Ministry of Environment of Korea. Forty-three families, 74 genera, and 130 species of higher fungi were found within the permanent square area of Mt. Jeombong and a 10 m radius of the ecological flux tower. Russulaceae (54 species, 21.9%), Amanitaceae (17 species, 6.9%), and Boletaceae (17 species, 6.9%) were the top three species taxa found in mycorrhizal mushrooms. Mycenaceae (nine species, 8.5%), Polyporaceae (11 species, 4.5%), and Strophariaceae (11 species, 4.5%) were the top three species taxa found in saprophytic mushrooms. These results were analyzed and compared with those of previous fungal mushroom studies.

Keywords: Funga, Higher fungi, Korea, Mongolian oak, Mt. Jeombong

1. Introduction

The Ministry of Environment of Korea began a national long-term ecological research project in 2004 to protect the changing and declining ecosystem. The national long-term ecological research project monitored changes in ecosystems, including long-term changes, and the maintenance, preservation, and purification of the ecosystem via interactions among organisms. The project was divided into a first phase (2004-2013) and a second phase (2014-2023). The first phase focused on office establishment, data accumulation, infrastructure, and international network establishment. The second phase focused on finding solutions via the analysis

¹Researcher, Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657 Chungcheongnam-do, South Korea

²Master Student, Department of Biological Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, South Korea

³Associate Researcher, Ecological Observation Team on Climate Change, Division of Climate and Ecology, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657 Chungcheongnam-do, South Korea

⁴Researcher, Ecological Observation Team on Climate Change, Division of Climate and Ecology, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657 Chungcheongnam-do, South Korea

⁵Researcher, National Agrobiodiversity Center, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365 Jeollabuk-do, South Korea

⁶Professor, Department of Forest Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si, 28644 Chungcheongbuk-do, South

⁷Researcher, Department of Forest Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si, 28644 Chungcheongbuk-do, South Korea

⁸Associate Researcher, Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology, 11210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657 Chungcheongnam-do, South Korea

of the current state and prediction using accumulated data collected from the primary research project (Joo et al., 2013). As part of the second long-term ecological research, the biodiversity of higher fungi distribution in the Mongolian oak forest area of Mt. Jeombong was investigated (National Institute of Ecology, 2017).

2. Main subject

2.1 Project description

Title is Research on soil microbial biodiversity and its interrelationship with the environment. During the second-phase long-term national ecological research, the interrelationship between soil microbial biodiversity and the environment at the Mt. Jeombong Main Research Center was investigated in 2017. The community ecology of soil microorganisms was investigated to identify the role of microorganisms in the forest ecosystem and elucidate the interactions among micro-

organisms. A biodiversity survey of higher fungi that form visible fruiting bodies was conducted, and survey data on the distribution status of the higher fungi in the Mongolian oak (*Quercus mongolica* Fisch. Ex Ledeb.) forest of Mt. Jeombong were collected.

2.2 Methods

This survey was conducted within a 10 m-radius of the ecological tower and the permanent square area (100×100 m [1 ha]) of Mt. Jeombong. The host plants and the surrounding environment were inspected, and the color and shape of the fruiting bodies were observed. The higher fungi were identified according to macroscopic traits, such as the shape, color of caps and structure of stems, and microscopic traits, such as the shape of spores. For the identification of higher fungi, Korean mushrooms (Park and Lee, 2010) and Japanese mushrooms (Imazeki, 2011) were referenced. Data were obtained according to the data standards

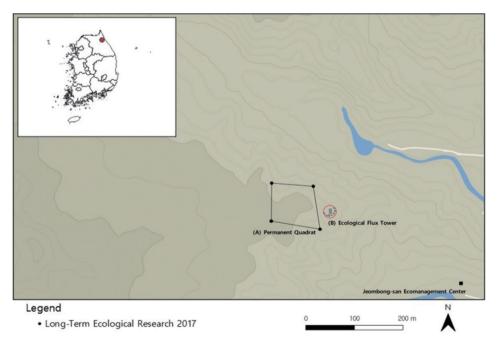


Fig. 1. Map of the research site at Mt. Jeombong in Gangwon-do (shown as a red circle in the inset). Biodiversity of higher fungi obtained within (A) the permanent 1 ha quadrat (100×100 m) indicated by black lines and (B) within a 10 m radius (red dotted circle) of the ecological flux tower.

Table 1. List of higher fungal species collected from the Mongolian oak forest of Mt. Jeombong

Family name	Genus name	Scientific name	Korean name ^c
Agaricaceae	Agaricus	Agaricus abruptibulbus	등색주름버섯°
	Cyathus	Nidula niveotomentosa	새둥지버섯°
	Lycoperdon	Lycoperdon pyriforme	좀말불버섯°
	Macrolepiota	Cyathus stercoreus	좀주름찻잔버섯°
	Nidula	Macrolepiota procera	큰우산버섯 ^b
Albatrellaceae	Albatrellus	Albatrellus sp.	방패버섯속 [°]
Amanitaceae	Amanita	Amanita fulva	고동색광대버섯 ^{a,b}
		Amanita melleiceps	파리버섯°
		Amanita pantherina	마귀광대버섯 ^{a,b}
		Amanita porphyria	암회색광대버섯 ^{a,b}
		Amanita rubrovolvata	붉은주머니광대버섯°
		Amanita spissacea	뱀껍질광대버섯°
		Amanita vaginata	우산광대버섯 ^{a,b}
		Amanita virosa	독우산광대버섯°
Auriculariaceae	Exidia	Exidia thuretiana	뭉게좀목이°
Auriscalpiaceae	Artomyces	Clavicorona pyxidata	좀나무싸리버섯°
Bankeraceae	Hydnellum	Hydnellum concrescens	고리갈색깔때기버섯 ^ª
Boletaceae	Boletus	Boletus pseudocalopus	산속그물버섯아재비 ^ª
	Leccinum	Leccinum extremiorientale	접시껄껄이그물버섯 ^{a,b}
	Pulveroboletus	Pulveroboletus ravenelii	갓그물버섯 ^{a,b}
	Tylopilus	Tylopilus eximius	은빛쓴맛그물버섯 ^{a,b}
		Tylopilus felleus	쓴맛그물버섯°
		Tylopilus neofelleus	제주쓴맛그물버섯°
		Tylopilus vinosobrunneus	포도쓴맛그물버섯 ^{a,b}
		Tylopilus virens	녹색쓴맛그물버섯 ^{a,b}
Cantharellaceae	Cantharellus	Cantharellus cibarius	꾀꼬리버섯°
Ceratiomyxaceae	Ceratiomyxa	Ceratiomyxa fruticulosa	알산호점균 [°]
Clavariaceae	Ramariopsis	Ramariopsis kunzei	쇠뜨기버섯°
Cortinariaceae	Cortinarius	Cortinarius alboviolaceus	흰보라끈적버섯°
		Cortinarius purpurascens	풍선끈적버섯 ^{ab}
		Cortinarius rubicundulus	크림끈적버섯°
		Cortinarius tenuipes	노랑끈적버섯˚
		Cortinarius traganus	연자색끈적버섯 ^{a,b}
		Cortinarius variicolor	다색끈적버섯°
		Cortinarius violaceus	끈적버섯 ^{a,b}
Crepidotaceae	Crepidotus	Crepidotus herbarum	풀귀버섯 ^{a,b}
Dacrymycetaceae	Calocera	Calocera cornea	황소아교뿔버섯˚
,,	Dacrymyces	Dacrymyces chrysospermus	손바닥붉은목이 [®]
Dermateaceae	Mollisia	mollisia ventosa	연한살갗버섯°
Diatrypaceae	Diatrype	Diatrype disciformis	요버섯°
z .a.i , paccac	Dialijpe	Diatrype stigma	넓은요버섯°

Table 1. (Continued) List of higher fungal species collected from the Mongolian oak forest of Mt. Jeombong

Family name	Genus name	Scientific name	Korean name ^c
Entolomataceae	Entoloma	Entoloma album	흰꼭지외대버섯°
		Entoloma chalybaeum	흑청색외대버섯 [°]
		Entoloma rhodopolium	삿갓외대버섯°
Fomitopsidaceae	Antrodia	Antrodia malicola	사과주름구멍버섯°
	Climacocystis	Climacocystis borealis	시루버섯°
Gomphaceae	Ramaria	Ramaria formosa	붉은싸리버섯°
Gyroporaceae	Gyroporus	Gyroporus longicystidiatus	큰둘레그물버섯°
Helotiaceae	Bisporella	Bisporella citrina	황색고무버섯°
Hydnaceae	Hydnum	Hydnum repandum	턱수염버섯 ^{a,b}
Hydnangiaceae	Laccaria	Laccaria amethystea	자주졸각버섯°
		Laccaria laccata	졸각버섯°
Hymenochaetaceae	Hymenochaete	Hymenochaete tabacina	소나무비늘버섯°
	Inonotus	Inonotus hispidus	시루뻔버섯 ^b
	Phellinus	Phellinus tremulae	버들진흙버섯°
Lyophyllaceae	Asterophora	Asterophora lycoperdoides	덧부치버섯 ^{a,b}
	Hypsizygus	Hypsizygus marmoreus	느티만가닥버섯°
Marasmiaceae	Marasmius	Marasmius maximus	큰낙엽버섯°
		Marasmius nigripes	검은대낙엽버섯°
		Marasmius rotula	낙엽버섯°
	Rhodocollybia	Rhodocollybia butyracea	버터철쭉버섯 ^b
Mycenaceae	Mycena	Mycena alcalina	악취애주름버섯 [°]
		Mycena alphitophora	흰애주름버섯 ^{a,b}
		Mycena filopes	가마애주름버섯 ^{a,b}
		Mycena haematopus	적갈색애주름버섯 ^b
		Mycena macrocystidiata	소녀애주름버섯°
		Mycena polygramma	세로줄애주름버섯 ^b
	Panellus	Panellus stipticus	부채버섯 ^{a,b}
	Roridomyces	Mycena rorida	젤리애주름버섯°
	Xeromphalina	Xeromphalina campanella	이끼살이버섯°
Omphalotaceae	Gymnopus	Gymnopus confluens	밀꽃애기버섯 ^ª
	Lentinula	Lentinula edodes	丑고ª
Ophiocordycipitaceae	Ophiocordyceps	Cordyceps nutans	노린재동충하초 ^ª
Physalacriaceae	Armillaria	Armillaria solidipes	다발뽕나무버섯 ^{a,b}
		Armillaria mellea	뽕나무버섯°
	Cylindrobasidium	Cylindrobasidium evolvens	담자고약버섯°
	Oudemansiella	Oudemansiella mucida	끈적끈끈이버섯°
Physaraceae	Physarum	Physarum polycephalum	황색망사먼지 [°]
Pleurotaceae	Pleurotus	Pleurotus pulmonarius	산느타리 [°]
Pluteaceae	Pluteus	Pluteus cervinus	는비섯 ^ª

Table 1. (Continued) List of higher fungal species collected from the Mongolian oak forest of Mt. Jeombong

Family name	Genus name	Scientific name	Korean name ^c
Polyporaceae	Datronia	Datronia mollis	미로구멍버섯ª.b
	Microporus	Microporus vernicipes	메꽃버섯부치°
	Polyporus	Polyporus brumalis	겨울구멍장이버섯°
	Trametes	Trametes pubescens	흰융털구름버섯 ^{a,b}
		Trametes versicolor	구름송편버섯 ^{®,b}
Pyronemataceae	Sowerbyella	Sowerbyella imperialis	황금대접시버섯°
Russulaceae	Lactarius	Lactarius aspideus	보라변색젖버섯°
		Lactarius chrysorrheus	노란젖버섯 ^{a,b}
		Lactarius piperatus	젖버섯 ^{a,b}
		Lactarius subplinthogalus	얇은갓젖버섯³
		Lactarius subzonarius	당귀젖버섯 ^{a,b}
		Lactarius sumstinei	우산주름젖버섯 [°]
		Lactarius volemus	배젖버섯°
	Russula	Russula alboareolata	목련무당버섯 [°]
		Russula amoena	가지무당버섯 ^ª
		Russula azurea	하늘색무당버섯 ^{a,b}
		Russula compacta	담갈색무당버섯°
		Russula cyanoxantha	청머루무당버섯 ⁵
		Russula emetic var. clusii	냄새무당버섯°
		Russula emetica	무당버섯 ^{a,b}
		Russula exalbicans	색바랜무당버섯 ^{a,b}
		Russula foetens	깔때기무당버섯 ^{a,b}
		Russula nigricans	절구무당버섯 ^{a,b}
		Russula sanguinea	혈색무당버섯 ^{a,b}
		Russula senecis	흙무당버섯 ^{a,b}
		Russula vesca	조각무당버섯°
		Russula violeipes	자줏빛무당버섯 ^ª
		Russula xerampelina	포도무당버섯 ^{a,b}
Schizoporaceae	Hyphodontia	Hyphodontia sambuci	석회돌기고약버섯˚
Sclerotiniaceae	Lanzia	Lanziza echinophile	털밤껍질버섯°
Stereaceae	Stereum	Stereum ostrea	갈색꽃구름버섯°
	Xylobolus	Xylobolus frustulatus	거북꽃구름버섯 ^{a,b}
Strophariaceae	Gymnopilus	Gymnopilus liquiritiae	미치광이버섯°
		Gymnopilus penetrans	침투미치광이버섯°
		Gymnopilus spectabilis	갈황색미치광이버섯 ^ª
	Hypholoma	Hypholoma fasciculare	노란개암버섯˚
		Hypholoma lateritium	개암버섯 ^ª
	Kuehneromyces	Kuehneromyces mutabilis	무리우산버섯˚
	Pholiota	Pholiota adiposa	검은비늘버섯*
	Stropharia	Stropharia rugosoannulata	트

Table 1. (Continued) List of higher fungal species collected from the Mongolian oak forest of Mt. Jeombong

Family name	Genus name	Scientific name	Korean name ^c
Suillaceae	Suillus	Suillus bovinus	황소비단그물버섯˚
		Suillus viscidus	녹슬은비단그물버섯 ^{a,b}
Thelephoraceae	Polyozellus	Polyozellus multiplex	까치버섯˚
	Thelephora	Thelephora multipartita	많은가지사마귀버섯°
		Thelephora palmata	단풍사마귀버섯 ^{a,b}
Tricholomataceae	Clitocybe	Clitocybe fragrans	흰삿갓깔때기버섯 ^b
		Clitocybe infundibuliformis	깔때기버섯°
	Collybia	Collybia cirrhata	흰무리애기버섯°
	Resupinatus	Resupinatus applicatus	꽃무늬애버섯°
Tubiferaceae	Lycogala	Lycogala epidendrum	분홍콩점균゚

^aPermanent quadrat.

and quality control procedures of EcoBank, a comprehensive ecological information system of the National Institute of Ecology.

2.3 Temporal coverage

The data used in this study were the biodiversity survey results of higher fungi obtained from the study of soil microbial biodiversity and its interaction with the environment during the second national long-term ecology study (2017) from July to October 2017.

2.4 Spatial coverage

The research area Mt. Jeombong is 1,424 m above sea level, and it is located on the border between Inje-gun and Yangyang-gun, Gangwon-do. Mt. Jeombong is geographically a transition zone between the northern and southern regions and topographically (Jeong et al., 2016); it is a mountainous area where various flora can be observed owing to its wide steep slope and high flat surface (Kim et al., 2017). The higher fungi were investigated within a permanent square area (100×100 m

[1 ha]) of the western slope of the ecological tower of the Key Ecological Research Center and within a 10 m radius of the ecological tower (Fig. 1).

3. Results and discussion

In 2017, 43 families, 74 genera, and 130 species were identified during the investigation of the higher fungi of Mt. Jeombong (National Institute of Biological Resources, 2019) (Table 1). The investigated higher fungi were divided into mycorrhizal and saprobic and organized according to the number of genera. Accordingly, 15 families, 22 genera, and 65 species of mycorrhizal mushrooms were found. Among them, four genera and eight species in Boletaceae accounted for the highest proportion. In addition, three genera and four species belonged to Tricholomataceae; two genera and 22 species belonged to Russulaceae; two genera and three species belonged to Thelephoraceae; one genus and eight species belonged to Amanitaceae; one genus and seven species belonged to Cortinariaceae; one genus and three species belonged to Entolomatacea; one genus and two species belonged to each of Hydnangi-

^bEcological flux tower.

^{&#}x27;Korean names of the mushrooms were obtained from "National Species List of Korea," "Wild Fungi of Korea."

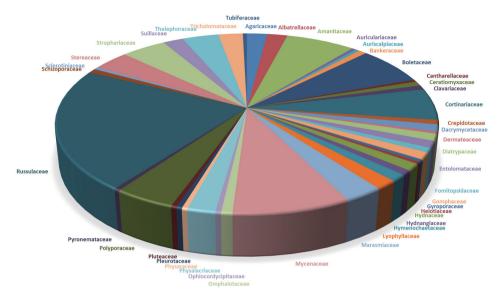
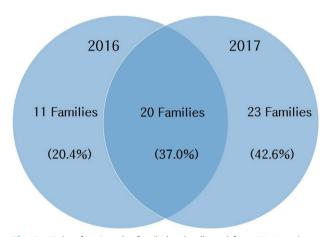



Fig. 2. Taxonomical structure of families of higher fungi of Mt. Jeombong, Korea in 2017. Russulaceae (54 species, 21.9%), Amanitaceae (17 species, 6.9%), and Boletaceae (17 species, 6.9%) are the top 3 taxa by species found in mycorrhizal mushrooms. Mycenaceae (nine species, 8.5%), Polyporaceae (11 species, 4.5%), and Strophariaceae (11 species, 4.5%) are also the top 3 taxa by species found in saprophytic mushrooms.

Fig. 3. Higher fungi at the family level collected from Mt. Jeombong in 2016 and 2017. Fifty-four taxa were identified: 11 in 2016, 23 in 2017, and 20 in both 2016 and 2017. Compared with 2016, there were an increase of 12 new taxa (38.7%) in 2017. Environmental data that can be linked to this result will be useful for the interpretation of the fluctuation in mushroom species.

aceae and Suillaceae; and one genus and one species belonged to each of Bankeraceae, Cantharellaceae, Gomphaceae, Gyroporaceae, and Hydnaceae.

Saprobic mushrooms belonging to 28 families, 52 genera, and 65 species were found. Among them, five genera and eight species in Strophariaceae accounted for the highest proportion. In addition, five genera and

five species belonged to Agaricaceae, four genera and nine species belonged to Mycenaceae, four genera and five species belonged to Polyporaceae, three genera and four species belonged to Physalacriaceae, three genera and three species belonged to Hymenochaetaceae, two genera and four species belonged to Marasmiaceae. Two genera and two species belonged to Dacrymycetaceae, Fomitopsidaceae, Lyophyllaceae, Omphalotaceae, and Stereaceae; one genus and two species belonged to each of Diatrypaceae; and one genus and two species belonged to each of Auriculariaceae, Auriscalpiaceae, Ceratiomyxaceae, Clavariaceae, Crepidotaceae, Dermateaceae, Helotiaceae, Ophiocordycipitaceae, Physaraceae, Pleurotaceae, Pluteaceae, Pyronemataceae, Schizoporaceae, Sclerotiniaceae, and Tubiferaceae (Fig. 2).

The higher fungi in the study area were compared by year at the family level (Fig. 3). Fifty-four families were identified, of which 11 (20.4%) were distributed only in 2016 and 23 (42.6%) only in 2017, while the remaining 20 (37.0%) were distributed in both years (Eo et al., 2021).

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding Information

This study was financially supported by the National Institute of Ecology under project Nos. NIE-B-2017-02 and NIE-B-2022-18 and the Ministry of Environment of Korea as basic ecological research.

References

Eo JK, Park ES, Won HY, et al (2021) The funga of higher fungi of the Mongolian oak forest in Mt. Jeombong, Korea. GeoData 3(2):1-11

- Imazeki R (2011) Nihon no kinoko. Yamatokeikokusha, Tokyo Jeong HM, Jang I, Hong S (2016) Relationship between aboveground biomass and measures of structure and species diversity in
 - biomass and measures of structure and species diversity in Quercus Mongolica-dominated forest Mt. Jeombong. KJEE 30(6):1022-1031
- Joo GJ, You YH, Min BM, et al (2013) The first 10 years of KNLTER (2004-2013) final report. National Institute of Environmental Research, Incheon
- Kim NS, Cha JY, Park YS, Cho YC, Kwon HJ, Oh SH (2017) Studies on Morpho-pedoMilieu of Forest Wetland on Mt. Jeombong – focused on diatom analysis and grain size analysis. J Korean Env Res Tech 20(1):13-24
- National Institute of Biological Resources (2019) National species list of Korea I plants, fungi, algae, prokaryotes. National Institute of Biological Resources, Incheon
- National Institute of Ecology (2017) Project of long term ecological research. National Institute of Ecology, Seocheon
- Park WH, Lee HD (2010) Wild fungi of Korea. Kyo-Hak Publishing, Seoul

Metadata for Dataset

Sort	Field	Subcategory#1	Subcategory#2
Essential	*Title	The funga of higher fungi of Mt. Jeombong (2017)	Dataset1
	*DOI name	10.22756/GEO.20230000000821	
	*Category	Biota	Macrofungi
	Abstract		
	*Temporal Coverage	July to October 2017	Acquisition period
	*Spatial Coverage	Address	Mt. Jeombong
		Permanent quadrat	Point
		- Upper left: N 38°02'18.90" E 128° 28'00.96"	World Geodetic System (WGS84)
		- Upper right: N 38° 02'18.65" E 128° 28'04.46"	
		- Lower right: N 38° 02'15.65" E 128° 28'04.99"	
		- Lower left: N 38° 02′16.25″ E 128° 28′00.89″	
		• Ecological flux tower	
		- Center: N 38° 02'16.87" E 128° 28'05.94"	
	*Personnel	Name	Ju-Kyeogn Eo
		Affiliation	National Institute of Ecology
		E-mail	abiesendo@gmail.com
	*CC License	Open data	Open data
Optional	*Project	Soil microbial biodiversity and its environment	LTER (2017)
	*Instrument	Collection bag	26×15×19 cm