Skip Navigation
Skip to contents

GEO DATA : GEO DATA

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Fusion"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Paper
Research on Building AI Learning Dataset for Synthetic Aperture Radar Waterbody Detection through Optical Satellite Image Fusion
Joonhyuk Choi, Ki-mook Kang, Euiho Hwang
GEO DATA. 2023;5(3):177-184.   Published online September 27, 2023
DOI: https://doi.org/10.22761/GD.2023.0029
  • 924 View
  • 32 Download
  • 1 Citations
AbstractAbstract PDF
For the spatiotemporal analysis of water resources and disasters, water body detection using satellite imagery is crucial. Recently, AI-based methods have been widely employed in water body detection using satellite imagery. To use these AI techniques, a substantial amount of training data is required. When creating training data for water body detection, optical imagery and synthetic aperture radar (SAR) imagery have their respective strengths and weaknesses. To use the advantages of both, this study proposes a water body detection method through the fusion of optical and SAR imagery. The results of the proposed model show an Intersection over Union of 0.612 and an F1 score of 0.759, which is better compared to using either optical or SAR imagery alone. This research presents a method that can easily generate a large amount of water body data, making it promising for use as AI training data for water body detection.

Citations

Citations to this article as recorded by  
  • A Comprehensive Review of Remote Sensing for Water-Related Disaster Management in South Korea: Focus on Floods and Droughts
    Eui-Ho Hwang, Jin-Gyeom Kim, Jang-Yong Sung, Ki-Mook Kang
    Korean Journal of Remote Sensing.2024; 40(5-2): 833.     CrossRef

GEO DATA : GEO DATA
TOP