In order to supply enough power for the satellite mission and at the same time to suppress cost increase through over-design, it is necessary to select an appropriate solar array and battery capacity. In the initial stage of satellite design, the required capacity must be analyzed to determine the solar array and battery model, which will be reflected throughout the overall satellite design. This study verifies that the CAS500 satellite platform can provide the power required for the mission in the initial stage of water resources satellite, and furthermore, it found the solar panel and battery capacity required for the water resources satellite. To this end, it was confirmed that the energy balance was satisfied by selecting the worst case one-day mission scenario of the water resources satellite under various conditions.
The increase in water-related disasters due to climate change has a significant impact on the stability of water resource facilities. The displacement of a water resource facility is one of the important indicators to evaluate the stability of the facility. In this study, the time-series displacement of the Yongdam Dam was constructed by applying the persistent scatter interferometric synthetic aperture radar (PSInSAR) technique to the Sentinel-1 C-band SAR images. A sufficient number of persistent scatterers were derived to enable local deformation monitoring of the Yongdam Dam, and the dam showed very small displacement velocity except during the heavy rainfall in August 2020. In the future, C-band SAR imagery from the water resources satellite (Next Generation Medium Satellite 5) is expected to provide accurate displacement data for water resource facilities.