Search
- Page Path
-
HOME
> Search
Data Articles
- GeoAI Dataset for Industrial Park Segmentation from Sentinel-2 Satellite Imagery and GEMS
-
Sung-Hyun Gong, Hyung-Sup Jung, Geun-han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
-
GEO DATA. 2025;7(1):36-44. Published online February 13, 2025
-
DOI: https://doi.org/10.22761/GD.2024.0054
-
-
Abstract
PDF
- Air pollution in East Asia presents critical environmental and health challenges, particularly in industrial regions affected by domestic and cross-border emissions. This study developed a GEO AI dataset specifically for industrial park segmentation, integrating Sentinel-2 satellite imagery, Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite data, and Air Quality Monitoring Network data. Optimized for semantic segmentation tasks with labeled data specifically for industrial park classification, this dataset serves as a foundational asset for the precise identification and spatial tracking of major air pollution sources. We validated the dataset’s applicability using a modified U-Net model, achieving a mean intersection over union of 0.8146 and pixel accuracy of 0.9608, thereby demonstrating its potential as a tool for detecting and monitoring pollutant sources in industrial areas. With future expansion through additional temporal data and diverse pollutant measurements, this dataset is anticipated to support regional air quality monitoring efforts and inform strategies for pollution control across East Asia.
- GeoAI Dataset for Urbanized Area Segmentation from Landsat 8/9 Satellite Imagery and GEMS
-
Sung-Hyun Gong, Hyung-Sup Jung, Geun-Han Kim, Geun-Hyouk Han, Il-Hoon Choi, Jin-Sung Hong
-
GEO DATA. 2024;6(4):478-486. Published online December 31, 2024
-
DOI: https://doi.org/10.22761/GD.2024.0053
-
-
Abstract
PDF
- In South Korea, air pollution has emerged as a pressing social issue, necessitating data-driven approaches to monitor sources of air pollutants. This study constructed a GEO AI dataset for detecting air pollution sources in urbanized areas, utilizing Landsat 8/9 satellite imagery, Geostationary Environment Monitoring Spectrometer geostationary satellite data, and air quality monitoring network data. The dataset is optimized for semantic segmentation tasks, including labeled data for urban area segmentation, and is designed to enable precise detection of pollution sources within urban regions by integrating satellite imagery and air quality information. Using this dataset, we applied a modified U-Net model to classify pollutant sources in urbanized areas, achieving high performance with an mIoU of 0.8592 and pixel accuracy of 0.9433. These results demonstrate the effectiveness of the GEO AI dataset as a tool for identifying and managing major pollution sources, providing foundational data for air quality monitoring and policy development across South Korea and East Asia. With further integration of additional air pollution data, this dataset is expected to contribute to long-term air quality management and the mitigation of health impacts associated with pollution.
TOP