Skip Navigation
Skip to contents

GEO DATA : GEO DATA

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > GEO DATA > Ahead-of print > Article
DATA ARTICLE Sentinel-2 위성영상과 정지궤도 환경위성을 활용한 산업단지 분류를 위한 GeoAI 데이터셋
공성현1,2orcid , 정형섭3,4orcid , 김근한5orcid , 한근혁6orcid , 최일훈7orcid , 홍진성8orcid
GeoAI Dataset for Industrial Park Segmentation from Sentinel-2 Satellite Imagery and GEMS
Sung-Hyun Gong1,2orcid , Hyung-Sup Jung3,4orcid , Geun-han Kim5orcid , Geun-Hyouk Han6orcid , Il-Hoon Choi7orcid , Jin-Sung Hong8orcid

DOI: https://doi.org/10.22761/GD.2024.0054 [Epub ahead of print]
Published online: February 13, 2025

1석박통합과정생, 서울시립대학교 공간정보공학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
2석박통합과정생, 서울시립대학교 스마트시티학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
3정교수, 서울시립대학교 공간정보공학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
4정교수, 서울시립대학교 스마트시티학과, 서울특별시 동대문구 서울시립대로 163, 02504, 대한민국
5전문연구원, 한국환경연구원 물국토연구본부 환경계획연구실, 세종특별자치시 시청대로 370, 30147, 대한민국
6이사, 네이버시스템(주), 서울특별시 송파구 중대로 135, 05717, 대한민국
7상무, 네이버시스템(주), 서울특별시 송파구 중대로 135, 05717, 대한민국
8차장, 이테라(주), 서울특별시 강서구 양천로 551-17, 07532, 대한민국

1Integrated Master and PhD Student, Department of Geoinformatics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
2Integrated Master and PhD Student, Department of Smart Cities, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
3Professor, Department of Geoinformatics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
4Professor, Department of Smart Cities, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, 02504 Seoul, South Korea
5Research Specialist, Division for Environmental Planning, Water and Land Research Group, Korea Environment Institute, 370 Sicheong-daero, 30147 Sejong, South Korea
6Director, Neighbor System, 135 Jungdae-ro, Songpa-gu, 05717 Seoul, South Korea
7Managing Director, Neighbor System, 135 Jungdae-ro, Songpa-gu, 05717 Seoul, South Korea
8Senior Manager, e-Terra, 551-17 Yangcheon-ro, Gangseo-gu, 07532 Seoul, South Korea
Corresponding author:  Hyung-Sup Jung, Tel: +82-2-6490-2892, 
Email: hsjung@uos.ac.kr
Received: 20 November 2024   • Revised: 26 December 2024   • Accepted: 7 January 2025
  • 76 Views
  • 10 Download
  • 0 Crossref
  • 0 Scopus

Air pollution in East Asia presents critical environmental and health challenges, particularly in industrial regions affected by domestic and cross-border emissions. This study developed a GEO AI dataset specifically for industrial park segmentation, integrating Sentinel-2 satellite imagery, Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite data, and Air Quality Monitoring Network data. Optimized for semantic segmentation tasks with labeled data specifically for industrial park classification, this dataset serves as a foundational asset for the precise identification and spatial tracking of major air pollution sources. We validated the dataset’s applicability using a modified U-Net model, achieving a mean intersection over union of 0.8146 and pixel accuracy of 0.9608, thereby demonstrating its potential as a tool for detecting and monitoring pollutant sources in industrial areas. With future expansion through additional temporal data and diverse pollutant measurements, this dataset is anticipated to support regional air quality monitoring efforts and inform strategies for pollution control across East Asia.


GEO DATA : GEO DATA
TOP