바로가기메뉴

본문 바로가기 주메뉴 바로가기

GeoData

지질학, 생태학, 해양학, 우주과학, 극지과학에서의 데이터 저널

논문목록

인공지능 데이터의 품질 관리 및 검증 현황

Quality Control and Verification of Artificial Intelligence Data

초록

높은 품질의 인공지능 데이터는 인공지능 모델을 개발하는데 있어 정확한 정보를 제공함으로써 모델의 효율성을 높이는 데 일조한다. 반면 품질이 낮을 경우 상호 데이터 간의 정보 불일치로 인하여 연구의 방향성을 해칠 수 있다. 이와 같이 인공지능 기반 모델 개발 연구의 질을 높이기 위해서 연구에 활용되는 데이터의 높은 품질을 확보하기 위해 체계적인 관리와 인증이 필요하다. 현재 우리나라의 데이터 품질 인증제도 뿐 아니라 미국의 데이터 품질 법, 국제 표준화 기구 ISO 8000 시리즈, 유엔의 빅데이터 품질 검증 기준 등 데이터 품질 관리에 대한 지침을 가지고 있다. 본 연구에서는 데이터 품질 관리 현황을 파악하고, 이에 대한 시사점을 고찰한다.

Abstract

High-quality artificial intelligence (AI) data provides accurate information for developing AI models. These results in increasing the efficiency of the model. On the other hand, if low-quality data is used, it may adversely affect the development of AI models. To improve the quality of our research, we need to increase the quality of AI data. This is possible through systematic quality control and verification of the data. Currently, there are various guidelines such as the data quality act of the US, the ISO 8000 series of the International Organization for Standardization, and the Big Data quality verification standard of the United Nations, as well as Korea's database quality certification. In this study, the current status of data quality management is identified and its implications are considered.


투고일Submission Date
2021-09-09
수정일Revised Date
2021-09-29
게재확정일Accepted Date
2021-09-30

Geo Data