The Geostationary Environment Monitoring Spectrometer (GEMS) observes air quality across East Asia from an altitude of approximately 36,000 km, analyzing the spatiotemporal distribution of atmospheric pollutants that spread beyond localized regions. GEMS currently provides 21 core air quality-related products, most of which are derived from Level 1C data, which has undergone geometric and radiometric correction. For enhanced accuracy in air quality analysis, precise surface reflectance estimation is essential. However, high-reflectance elements, such as snow, interfere with the accurate estimation of radiance values, necessitating precise detection of such areas. Despite this, GEMS relies solely on the ultraviolet and partial visible bands, lacking the infrared bands crucial for snow detection, and it has no proprietary snow detection algorithm, instead utilizing near-real-time ice and snow extent data from the U.S. National Snow and Ice Data Center. Recently, deep learning techniques have shown potential in image processing, outperforming traditional algorithms, which could address these limitations. However, there is currently no deep learning training dataset available for snow detection specifically for GEMS. To address this issue, this study developed a GeoAI dataset for training a deep learning-based snow detection model for GEMS. In this research, we constructed input data using GEMS Level 1C data and generated label data based on GEMS, Advanced Meteorological Imager, and MODIS snow cover data. The snow detection dataset developed in this study is expected to address the snow detection limitations of GEMS, providing foundational data to enhance the reliability of future geostationary satellite-based air quality research.
Land cover provides crucial information related to biological geography, ecological climatology, and human activities. In the past, land cover mapping was performed based on visual interpretation, but it had limitations in terms of time and cost. Recently, it has become possible to create land cover maps with higher temporal resolution over wider areas using artificial intelligence-based models. The accuracy and reliability of AI model-based land cover maps increase with the amount of training data, but it is difficult to acquire large amounts of data due to the time required for label data annotation. In South Korea, the Environmental Geographic Information Service provides self-learning data consisting of aerial orthoimages and subdivision land cover classification level label data, making it possible to collect high-quality data. Therefore, this study examined the feasibility of self-learning data by building and evaluating a U-Net-based land cover classification model for waterfront areas using self-learning data. The trained model showed relatively low performance with an F-1 score of 0.61 for training data and 0.31 for test data. The model’s low performance is thought to be due to insufficient training caused by the large number of classification categories (34) and data imbalance between categories. Although the model performance using self-learning data was low, it is believed that model performance can be improved by grouping classification categories according to research purposes or resolving data imbalance through data augmentation techniques. Therefore, self-learning data is expected to be utilized in various studies using land cover.
In South Korea, Asian dust frequently occurs during the spring, causing various health issues, including respiratory diseases. Consequently, public awareness and concern about air pollutants have increased, leading to demands for improved air quality and accurate forecasting. To meet these demands, the Ministry of Environment has deployed the Geostationary Environment Monitoring Spectrometer (GEMS) on the GK2B satellite to monitor atmospheric pollutants and climate change-inducing substances in real-time. The current GEMS dust product, generated using thresholds of the UV-aerosol index and visible-aerosol index, has shown limitations in accurately detecting suspended particulate matter. This study aims to develop a comprehensive AI dataset for improving GEMS Asian dust detection. Data were collected from January to May 2021, focusing on dates with significant dust events. Label data were meticulously generated through annotations based on outputs from various satellites and groundbased observations. Subsequent data preprocessing and augmentation techniques, including normalization and cut-mix, were applied to enhance the dataset’s robustness and generalizability. To evaluate the dataset, model training was conducted. The results predicted by the model showed improvements over the detection results of existing algorithms. Future datasets will be developed with improved labeling methods and accuracy verification techniques. These dataset improvements are expected to contribute to the development of deep learning models with superior predictive performance compared to current dust detection algorithms.
Citations
Citations to this article as recorded by
GeoAI Dataset for Training a Deep Learning-based GEMS Snow Detection Model Jin-Woo Yu, Jun-Hyeok Jung, Kyoung-Hee Kang, Yong-Mi Lee, Hyung-Sup Jung GEO DATA.2024; 6(4): 552. CrossRef
The variations in the water area and water level of Cheonji, the caldera lake of Baekdu Mountain, serve as reliable indicators of volcanic precursors. However, the geographical and spatial features of Baekdusan make it impossible to directly observe the water area and water level. Therefore, it is crucial to rely on remote sensing data for monitoring purposes. Optical satellite imagery employs different spectral bands to accurately delineate the boundaries between water bodies and non-water bodies. Conventional methods for classifying water bodies using optical satellite images are significantly influenced by the surrounding environment, including factors like terrain and shadows. As a result, these methods often misclassify the boundaries. To address these limitations, deep learning techniques have been employed in recent times. Hence, this study aimed to create an AI dataset using Landsat-5/-7/-8 and Sentinel-2 optical satellite images to accurately detect the water body area and water level of Cheonji lake. By utilizing deep learning methods on the dataset, it is reasonable to consistently observe the area and level of water in Cheonji lake. Furthermore, by integrating additional volcanic precursor monitoring factors, a more accurate volcano monitoring system can be established.
Citations
Citations to this article as recorded by
Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung Korean Journal of Remote Sensing.2024; 40(5-1): 507. CrossRef
The fluctuations in the area and level of Cheonji in Baekdu Mountain have been employed as significant indicators of volcanic activity. Monitoring these changes directly in the field is challenging because of the geographical and spatial features of Baekdu Mountain. Therefore, remote sensing technology is crucial. Synthetic aperture radar utilizes high-transmittance microwaves to directly emit and detect the backscattering from objects. This weatherproof approach allows monitoring in every climate. Additionally, it can accurately differentiate between water bodies and land based on their distinct roughness and permittivity characteristics. Therefore, satellite radar is highly suitable for monitoring the water area of Cheonji. The existing algorithms for classifying water bodies using satellite radar images are significantly impacted by speckle noise and shadows, resulting in frequent misclassification. Deep learning techniques are being utilized in algorithms to accurately compute the area and boundary of interest in an image, surpassing the capabilities of previous algorithms. This study involved the creation of an AI dataset specifically designed for detecting water bodies in Cheonji. The dataset was constructed using satellite radar images from TerraSAR-X, Sentinel-1, and ALOS-2 PALSAR-2. The primary objective was to accurately detect the area and level of water bodies. Applying the dataset of this study to deep learning techniques for ongoing monitoring of the water bodies and water levels of Cheonji is anticipated to significantly contribute to a systematic method for monitoring and forecasting volcanic activity in Baekdu Mountain.
Citations
Citations to this article as recorded by
Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung Korean Journal of Remote Sensing.2024; 40(5-1): 507. CrossRef
GeoAI Dataset for Urban Water Body Detection Using TerraSAR-X Satellite Radar Imagery Eu-Ru Lee, Jun-Hyeok Jung, Ki-Chang Kim, Seong-Jae Yu, Hyung-Sup Jung GEO DATA.2024; 6(4): 435. CrossRef
Air pollution is a serious problem in the world, and it is necessary to monitor air pollution emission sources in other neighboring countries to respond to the problem of air pollution spreading across borders. In this study, we utilized domestic and international optical images from KOMPSAT-3/3A satellites to build an AI training dataset for classifying industrial parks and quarries, which are representative sources of air pollution emissions. The data can be used to identify the distribution of air pollution emission sources located at home and abroad along with various state-of-the-art models in the image segmentation field, and is expected to contribute to the preservation of Korea’s air environment as a basis for establishing air-related policies.
Citations
Citations to this article as recorded by
Performance Comparison of Water Body Detection from Sentinel-1 SAR and Sentinel-2 Optical Imagery Using Attention U-Net Model Il-Hoon Choi, Eu-Ru Lee, Hyung-Sup Jung Korean Journal of Remote Sensing.2024; 40(5-1): 507. CrossRef
Information on shape and type of road present in an optical image of satellite is useful for digital mapping and monitoring of road changes. Processing and structuring optical image data collected from payloads mounted on KOMPSAT 3 and 3A can accelerate the development of road detection algorithms and the extraction of road information using them. In particular, if it is built with a learning dataset for AI (Artificial Intelligence) prepared to apply deep learning technology, the latest artificial intelligence technology in the field of computer science can be spun off to the field of satellite image-based road detection to attempt a wide range of analysis. Korea Aerospace Research Institute constructed an image dataset for AI learning using satellite optical images with Korean companies, and this paper explains the type and size of datasets along with examples of the use of the dataset. The established data can be used through the website, aihub.or.kr.